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This paper studies the boundedness  of so lu t ions f  of the initial-value problem for 
the space-homogeneous Boltzmann equation for inverse kth power forces, when 
k > 5, and  under  angular cutoff. The main result is that if the initial value is 
f0/> 0 with (1 + Ivl2)f0 ~ Z ' ,  and (1 + Ivl)% E L ~ for some s > 2, then (1 + 
Ivl)Sy, e Z ~ for t > 0 and eSSv,tSup(1 + Ivi)S'f(v,t) < oo for any s '  < s when 
s < 5, and any s'  < s if s > 5. 
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1. INTRODUCTION 

This paper studies the boundedness of solutions f of the initial-value 
problem for the space-homogeneous Boltzmann equation with inverse kth 
power forces, when k > 5, and under angular cutoff. The main result, 
contained in Theorem 2 below, is that if the initial value is f0 I> 0 with 
(1 + Ivl2)f0 ~ t 1, and (1 + Ivl)70 ~ Z ~176 for some s > 2, then (1 + Ivl)S'ft 

L ~ for t > 0, and ess~,tsup(1 + Ivl)Sy(v, t) < o~ for any s' < s when 
s < 5, and any s' < s if s > 5. 

The only previous results in this direction that we are aware of are by 
Carleman (2) for elastic collisions and s > 6. For a comment see the remark 
after Theorem 2. Our proof is based on a sharpening of his methods 
coupled with the use of the by now fairly well developed L 1 theory. 
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2. PRELIMINARIES AND STATEMENT OF THE MAIN THEOREM 

In this paper we study spatially homogeneous solutions of the nonlin- 
ear Boltzmann equation when there are no exterior forces, i.e., solutions of 
the equation 

Dtf(v , t )  = Qf(v, t )  (t > O, v E R 3) (1) 

with Cauchy data 

f (v ,  O) = fo(v) >1 0 (v E R 3) 

Here Q denotes the collision operator 

Qf(v,) = fR3• f | f (  f ~(vt ,v2) ) -- f | f ( v ,  ,v2)]S(u,w)d~t,  dv2, 
(2) 

f | g (v t ,  v2) = f(v~) g(v2) 

and 

w(v,  ,v2) = I v , -  v21 

For molecules with angular cutoff the impact parameter u is restricted to a 
set 

B= B( . )=  {u=(O,r)~R2;O< 0 < ~ / 2 - , , 0  < ~ ~2~) ,  

and S is independent of ep, 

S ( u , w )  = S(O,w), dp~ = sinOdOd~ 

denotes a diffeomorphism of the velocity and impact parameters. 
If the impact parameter is u, the asymptotic velocities v~, v' 2 after collision 
of two colliding particles with initial velocities vl and v2 are given by 

(v~, v;) = f . ( v , ,  ~) 
Set 

p : R  3 >( R3----~R 3 (v I ,v2)--~ vl + v 2 

T :  R 3 • R3---~ R (v 1 ,v2)--+ [v,[ 2 + iv2[ z 

:R  3 X R3---~R 3 X R 3 (v 1 ,v2)--~(v2,vl) 

On physical grounds ~r is subject to the restrictions 

e o ~ e -  =p ,  T o f , = T ,  

~ ~  ~-u = f u  ~ E, ~ f o  f --. identity 

It follows that 

W O ~ = W O  f u  =W 

For a thorough discussion of (2)-(4), see Ref. 4. 

(3) 

(4) 
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We shall also introduce the familiar decomposition of Qf, 

O f ( v l )  = J f ( V l )  - f(Vl)Lf(vl) 
with 

Lf(v,) = 2 3  x sf(V2)S(u, w) d#u dv2 

and 

together with 

= ,l)2)S(~l,w)d~udv 2 Jf(v,) L~•174 ' - -  

= s  , v2)S ( u, w) d~u dv2 Jfg(vl) ,xs f |  ' - 

The following norms will be used: 

Ilfll~,, =s  + Iv[2) "/=dv 

Ilfll~,s = esssuplf(v)l(1 + Ivt)" 
v E R  3 

as well as the corresponding weighted spaces 

Lf  = L~e(R 3) = ( f ;  f measurable on R 3, Irfllp,s < ~} 

and their positive cones 

L~'+= ( f E L f ; f > ~  0'a.e. ) 

Set 

and define 

for functions 

R+ = ( t  E R; t /> 0) 

I[fllp,,,+ = sup [If(' ,  t)[lp,, 
t > 0  

f : R+--> L~ 

A.o. for inverse kth power forces, 5 < k < ~ ,  
factorizes (cf. Ref. 4, p. 181) as 

(s > o) 

(~ > o) 

(s > 0,p = 1 , ~ )  

the weight function S 

s(o,w) = &(O,w) = h~(O)w~ = h(O)w~ (5) 
with 

0 < / 3 - -  ( k -  5 ) / ( k -  1) < 1 

The dependence of S and h on k will usually be suppressed below. We shall 
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also refer to the case of elastic collisions with 

S(O,w) = h(O)w, h(O) = cos0 

as S~(O, w). In the present paper we only consider 

sk(o,w), 5 < k <. 
with angular cutoff at 

taking 

0 = ~ r / 2  - c 

e > 0  for 5 < k < ~  
e = 0 for k = 

It is well known that h is bounded under these cutoffs. For a proof see, e.g., 
Ref. 4, pp. 181 and 317. 

In the following lemma we summarize some essentially well known 
properties of the Boltzmann equation (1) in the Ll-case. 

Lemma 1. Let fo be given with 

fo E L l' +, fol~ fo E Lo 1 (6) 

Then for inverse kth power forces with 5 < k ~< m, and angular cutoffs, 
there is a solution 

f :  R+ ~ L~ '+ 

of the Boltzmann equation (1) with initial value 

f(v, O) = fo(v) 
such that 

fR~f(v,t)av= s s s vfo(v)dv (7) 

f,~f(v,/)lvl 2 de <~ fR3fo(v)lvl = dr (8) 

fR3f( v, t)log f(v, t) dv <. fR3fO( V)log fo( v) dv (9) 

If [Ifolll,,, < ~ for some s 1 > 2, then the solution can be chosen so that 

Ilflll,,,,+ < ~ (10) 

3. SKETCH OF PROOF 

The existence results including (7)-(9) follow by the methods of Ref. 1. 
The global estimates of higher moments in that paper are not strong 
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enough to give (10). They have been improved by Elmroth in Ref. 3 for the 
case of kth power molecules without cutoff. His estimates can also be used 
in the present cutoff case to prove (10). 

Remark. Any solution of Lemma 1 is for a.e. •l a continuously 
differentiable function 

f(v,  . ):  R+ --> R+ 

satisfying the Boltzmann equation (1) pointwise. For a discussion see, e.g. 
Ref. 4, Chap. XXI. 

The main result of this paper is an L ~176 analog of (10) contained in the 
following theorem, and proved in the final section. 

Theorem 2. Suppose 

f o ~  L~'+ nL,~ (11) 

for some s 2 > 2, and f is any solution of the Boltzmann equation (1) with 
initial value f0, satisfying (7)-(9), and if s2 > 5 (10) for all s I < s 2 - 3. Then 
f is a mapping from R+ to ~ ,  and 

l l/If~,h,+ < C~ < ~ (12) 

for any s2 < s2 when s 2 < 5, and any s2 < s2, when s 2 > 5. 

Remark, Carleman's L = estimates in Ref. 2 correspond in our 
theorem to the case k = oo, s 2 > 6. There he also obtains (12) for s2 = s2- 

In Theorem 2 it follows from the hypothesis f0 E L~  N L0 ~ that f01og f0 
E L01. And so (6) holds, implying the existence of at least one solution f 
satisfying (7)-(9). If s 2 > 5, then moreover fo E L)~ '+ for any s I < s 2 - 3, 
and the solution can be so chosen that (10) holds for these values of s 1 . 

Constants are in this paper denoted by C, and C~ denotes any constant 
only depending on k and the relevant L, p space. A constant also depending 
on f0 is denoted by C ~ Other kind of dependence, when emphasized, will 
be indicated by brackets as the dependence on g2 in C~ above. 

For the proof of Theorem 2 we shall repeatedly use the following 
well-known lemma: 

Lemma 3. Suppose h 1 and h 2 are continuous, real-valued functions 
on R+ with h 1 > 0. If 

f '  + h , f  < h 2 (t > O) 

then 

sup f ( t )  < max(f(O), suph2(t)/h,(t)) 
t > 0  t > 0  
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We shall also need some transformations of Jf  and Lf. Let E~,~ denote 
the plane in R 3 through v and orthogonal to v - D, 

Eo,~ = ( v ,  ~ g 3 ;  ( ~  - ~ ) ( v  - v , )  = 0 }  

Its Lebesgue measure is denoted by dE 1. By elementary- computations we 
can express Jfg through integration over such planes, 

= fRJO2"fO~/2-'f(v~)g(v~)wfl(V~, v'2)h(/9 )sin0 dO dqJ dv 2 Jfg(vl) 

= ( f(v{) f g(v'2)h(O)cos-2Ow-~(v'l,v'2)dE~dv~ (13) 
J R  3 d E v  j , .  i '* 

Here 

= 2 - ( k  - 5 ) / ( k  - 1) = ( k  + 3 ) / ( k  - 1) 

and Ev,,v;, , is the subset of the plane Ev,,v; corresponding to an angular 
cutoff at/9 = ~r/2 - c. For a proof see Ref. 2, p. 32. 

Below we shall often use "for a.e. E~,~" in the sense that for each v the 
property in question holds in a.e. direction (v - ~)/Iv - vl. 

The integral 

fR ,(v,)jfg(v,) dv, 
can be transformed as follows: 

X sin/gwB(vl ,VE)d/gdcpdvldv2 

= fR3xg3f(vDg(v~)~ h(O) 

• cos-i/gw-'~(v I ,v2)q~(v~)do'dvldv2 (14) 

Here p, is the cutoff at/9 = ~r/2 - c of the sphere p with center (Vl + v2)/2, 
radius Iv1-  v21/2, and /9 the angle between v ~ -  v I and v 2 - v  1. The 
measure do' is the Lebesgue measure on p,. For  a proof see Ref. 2, p. 33. 

Recalling (5) we can write Lf as 

fR fo2~ fo ~'/2-" f(v2)w/3(v''v2)h(/9)sinodOd~pdv2 Lf(vl) = 3 

rr / 2 - -  E . f l  = 2~fo h(O)s,nOdOfR3f(v2)w (v,,v2)av2 

= C k ( j ( v 2 ) w ~ ( v , ,  v2) dv 2 (15) 
d R  
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4. ESTIMATES OF THE COLLISION TERM 

In this section we collect some estimates of Lf and of Jf and its factors, 
which later will be used in the proof of Theorem 2. 

Lemma 4. I f f  E LJ '+ and fR~f(v)log+f(v)dv < C ~ then 

Zf(v) > C~(C ~ [Ifll~,2, Ilfll~,0)(1 + Ivl) e 

Proof. We notice that 

:Vl_V21<rf(ID2) d�9 < :vl_ v2[< r, f(v2)<j f(D2) dD2 

+ (log j ) - '  ( f(v2)log+f(v2)dv2 ( j  > 1) ay(v2) >j 

For a suitable choice of r a n d j  only depending on [If Hi,0 and C ~ we get 

flv,_v21<rf(vz)dv2< 2-~11/11,,0 (v, ~ R 3) 

And so by (15) 

t f(vl) = c~ fR~f(v2)lv,- v2l" dr2 

> C~rB:vl_v21>rf(v2)dv2> C:~lrfl[l,O/2 (16) 

To get another estimate of Lf we notice that 

Iv1 - v 2 :  ~> Ivy:  -Iv21 ~ 
if 0 </3  < 1, thus for fl = (k - 5) / (k  - 1) and 5 < k < ~ .  Together with 
(15) this implies 

Zf(vl) = c~ fR3f(v2)lv,- v21/~dv2/> ck(Iv, lel l fNl ,O - I[flll,2) (17) 

The lemma follows from (16) and (17). 

I.ernma 5. I f f  E L~ ,+, then 

f/: '1 ( v a ) l v , -  v l -~dv~  -<< C~(~')llflfff,2 (0 < ~, < /3) (18) 
~,0 

vl- .v, <. r 
~,0 JR ~,0 

( f l <  y < 2 )  (19) 
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Proof. By (14) 

X If) l -  1)21"-c~1~- vl-~do'dv, dv2 

For 0 < 7 < 2 

vl - do' < 

Since/3 = 2 - a, the above implies that 

~ Jf(Vl)lVl-vl-rdv, < C~('g)~• dv2 
And so (18) follows for 0 ~< y < fl, and (19) for 13 < 7 < 2. 

I.emma 6. Suppose that 

s i , s 2 > 0 ,  s 2 - s l < 3 ,  and f~L~f+~L,~ 
Then for 0 < 7 < 3 

where 

;R3f(L~I)I~2-- I)lI-YdDl < C(llfll~,s, + Ilfll~,,~)(1 + }el) -~ 

b --- min(y,s  1 + 7(s 2 - s t ) /3 )  

Proof .  Set 

O, -- (v, ;IVll < Ivl/2} 

0 2 = (v ,  ; I v  - v,I  < [vl(S=-*')/32 - '  } 

03= R3\(01 U 02) 

Then, as is easily checked, 

fo , f (v l ) lv-  v,t-~ dvi <. cO)fl),,o + lifl)~.o)(1 + }w})-v 

foj(Vl)lv - v,l-~av, < C(llfll,,o + l[ fl[ =,,=)( 1 + lv]) - '~+(3-~(S'-` ')/3 

fo f(vOlv - vlJ-V dvl <<" C(llfll,,,, + Ilftlo~,0)( 1 + [~1) -~'-r(*=-' ')/3 
3 

This proves the lemma. II 
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Lemma 7. I f f  E Lo 1'+, then for a.e. plane E~,~ 

~Ev,/f(1)l)dE,~ C, d l f [ l l ,o  s -Oz+l d�9 2 oo,0 

Proof. 
and set 

Denote by d or d0)l)  the distance from o 1 to the plane Ev, ~, 

0j(Vl) = (j~--t)W2exp( - jd 2) (20) 

Then 

)im 230j(Vl)Jf(vl)dVl= fE~,/f(vi)dE1 

By (14) 

s vOJf( vi) dv, 

3xR3f(vl)f(v2) h(O)cos-iOiv, v21 ~(Vl)do'dvldl)  2 

< sup h(0)cos-'0 R/(vOf(v2)lv,- v21-~ 
0<0<~r/2-e 

X ~ j  (/)tl) do'  d v  1 d v  2 

In the limit for a.e. plane Ev, ~ this gives 

Here X = 1 if the plane E~,~ intersects the sphere P, otherwise X = 0. But 
(21) implies the desired result. �9 

Lemma 8. Given v E R 3, set 

~(vl)  = 0 for IVll < Ivl, = 1 otherwise 

I f s  1 > 1 2 a n d f ~ L  1 N L ~  then fora .e ,  p l a n e E ~  s I ~ 

L?J~(vOJf(vOdE, < Ck(llfll~,,, + IIfN~,0)2(1 + Ivl) - s ' - ~ §  

with Ck independent of the plane E~,e. 

Proof. As in the proof of Lemma 7 for a.e. plane E~,~ 

fe~,r < C~s215 v2l-~+lxdvldv2 

In this case 0 < X -<< 1 and X = 0 if both v 1 and v 2 are small enough, e.g., if 

Ivd < i v l / ~  and Iv~l < Ivl/~- 
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And so by Lemma 6 (and symmetry) 

J(vl)Jf(v,)  dE1 

sup ;R3f(v~)lv~- v2[-~+ldVl 

<~ Ckl[flll,,,(llf[ll,,l + I[fll~,o)(1 + Ii)1) - s , -~  

5. ESTIMATES OF THE SOLUTIONS 

Inserting the estimates of J f  and L f  from the previous section into the 
Boltzmann equation (1) with solution f as in Lemma 1, and applying 
Lemma 3 we shall now prove a sequence of increasingly better estimates of 
f ,  with Theorem 2 as our final result. 

Lemma 9. Under (11), if 0 < Y < 2, then 

I J R  ,0, + 

Proof. 
case 3' > 0 we let 

~ :R+--~R+ 

denote a continuous function with 

0 < cp < 1, ep(x) = 0 (x < 1), cp(x) = 1 

For 0 < 7 < /3, an integration of (1) multiplied by 

ep(jlv - v,I)lv - v,[-v 

implies by (7)-(9), Lemma 4, and Lemma 5, that 

O,s , , t )~ ( j l v  - v i i ) I v -  �9 d'/)l 

+ C~ I , t ) ~ ( j l v -  vi i ) Iv-  v~l -v dvl 

< O, fR~f(v  1 , t)q~(j[v -- v,l)lv- vll-~dv~ 

+ fR3Lf(vl , t ) f (v l  , t ) e g ( j l v -  ell)Iv- v~l-~dv~ 

= fRJf(v  ,t)ep(jlv - v~l) lv-  v , l -Vdvt  < Ckllf0[f~,2 

The case y = 0 is the mass-conservation of (7). To study the 

(x >/2) 
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And so by Lemma 3 

s t)(tJ(jlv - vd)lv- 

< max( f Jo(v , ) lv -  

< max( 6(3')(11 foil 1,o + 

vll-~'avi 

vll-V dv, , Ckll foll~,U C ~ ) 
~,0  

2 0 
II/oll~,0), Q<IIIolII,2/ C~ ) 

.< c ~  < = (t > 0) 

For 0 < 3' < /3 the lemma follows in the limit j--> m. For/3 < 7 < 2 in the 
same way 

D , ~ 3 f ( v l  , t )~(J lv  - v,t)l v -  vil-~ dv, 

+ C~ t)w(jlv - vii)Iv- vd-~dVl 

< Ck(3')llfoIli'OiifR3f(vl't)iv- Vll~-r dvl ooO (22) 

By the previous part of the proof, the last term is bounded for t > 0, when 
/3 -<< 3' < 2/3. Again by Lemma 3 this implies 

f~,f(v, , t ) ~ ( j l v  - v,I)tv- v l l - rdv l  < C~ < oo (t > O) 

For /3  < ~/< 2/3, the lemma follows in the limit j---> oo. By induction the 
lemma follows for all 3' with 0 < 7 < 2. 

L e m m a  10. Under (11) for a.e. plane Ev, ~ 

a&~. f ( v l '  t) dE l < C ~ (t > O) (23) 

Proof. Define ~ by (20). An integration of (1) multiplied by g)j 
implies by (7)-(9) and Lemma 4 that 

Dts162 + C~163162 

.o v, + 

= f./.s(v,)#(v,. 0 <iv, 
By (7), Lemma 7, and Lemma 9 the right member can be estimated 
independently of j as 

ckilSll,.olL.S(v2 ,)iv,- v2i-~ 
2 oo,O 

C~llf011,,oC~ - 1) = C~ - 1) < oo (t > 0) 
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An application of Lemma 3 gives 

f . jb.s(vi) f(vi  , t)dv,<. max(f .3+i (v i ) fo(v i )dv . , C~ - I)/Cp< ) 

For a.e. plane E~,~ 

io(v,).o, 

~So~ .... s + (.~ +,,~)'"}-"<,,,.,,,,. 
Hence 

fE~j(vi,t)dvl= lim fR3q,j(vOf(vl ,t)dvl < C ~ < ~ (t > O) 

Lemma 11. Set 

~p(vl) = 0 for Ivll < Ivl, •(v,) = 1 otherwise 

Under (11) for a.e. plane E~,~ 

f ~ j ( v , ) f ( v ,  , t) de, 

w(,~)(, + s<,p Hs~.,,)~j=.o)'(1 + i,i) -s;-'} 
0<~-<t 

Here s~ = 2 i f  s~ < 5, and s] is on ly  restr icted by  s] < s z - 3 i f  s 2 > 5. 

Proof. Define ~j by (20). An integration of (I) multiplied by ~j~ 
implies by (7)-(9) and Lemma 4 that 

D,f,j>A,.,),~(v,)f(,,~ ,t)a,,, + 8~ + ivl),, f,d~;(.,),~(,.,)y(,,, ,,)a,,, 
v,f,<.+,(,,,)v.(,,,)S(v, .od,,, + f .  +,(v,),~(vi)ti(,,, ,,r ,od,,, 

= fJs (vO~( .Oaf (v , ,  t) av, 

By hypothesis f0 ~ L)I a n d f  satisfies (10) for s~ if s' 1 > 2. So we can use 
Lemma 8 to estimate the right member, 

f,v~;(v,)~(r,)sf(,,, .0d~, < C~~ + IIf('.t)l l=.o)2(1 + I~l) - ' '~-~ 
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Thus  

DtfR3dOj(Vl)tP(v,)f(v],t)dvl + C~ + [�9 1 ,t) dI?l 

< C~ 1 + [[f(',t)[[oo,01~(1 + [v[) - ' i - ~ + '  

We recall that a + fl -- 2 and apply Lemma 3 to obtain 

fR 3~(/.)l)lp(1)l)f(~l, t) dv 1 

<. max( f.3q~/v,)~(v,)fo(v,)dvl 

f ; ] 1 + sup Ilf( ' , ' ) l i~,0 (1 + 
0<~-<t 

The desired result follows in the l i m i t j ~  oc for a.e. plane E~,~. 

I .emma 12. Under (11) the following result holds: 

Ilfl[oo,0,+ < cO 

Proof. By (1), (13), and Lemma 4 

Dtf(v , ,t) + C~ + ]v,l)• f (v ,  ,t) 

<<. Dtf(v , , t) + f ( v , ,  t )Lf(v, ,  t) = J f (v , ,  t) 

= fR3f(v ~ , t ) (  f(v~,t)h(O)cos-2OIv~ - v~[-~dE~dv'[ 
dEvb~i,r 

< C~(dv ' l f (v ' , )  I v]- "~l[--aff f(v'2)dE~ (24) 
d R  3 Ev,,v, ~ 

Using Lemma 9 and Lemma 10 we get 

Dtf(v 1 ,t) + C~f(v, ,t) < C~ (t > O) 

And so the desired result follows by Lemma 3. 

Proof of Theorem 2. Given vl, i f f (v )  = 0 for [v[ > [vl[/v~, then 

f(v'l)f(v~) = 0 (v2 E R 3, u ~ B)  

and so Jf(v 0 = 0 if f (v)  = 0 for Iv[/> [vl[/Vc2. To use this property of J we 
split f in the following way. Given v I we set 

f = f  + f . ( =  f,~, +f.,v,) 
with 

f ( v ) I  =f.,v~(V)] = f ( v )  if Iv[ < Ivl]/~/2, = 0 otherwise 
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Then 

Jf(v,) = Jfu(vl) + JfJ.(v,) + Jfuf.(Vl) + Jf.(vl) 
= Jf.(v,) + JfJu(v,) + Jf~(v,)  (25) 

F rom the representation (13) it follows that 

= (  ' ( f,(v2)h(O)cos Olv , -  vzl dE2av , jfju(Vl) 3 f / ( I )  1 )  t - - 2  ! t --Or t , 

J R  ..,' E v  ~ , v,~ , ~ 

<. ck f, j,(,;,)l I ) 1 - -  vil-  fEv, o L(vi)aF4dv (26) 

and analogously for Jfj,,. Also 

2~r ~ r / 2 -  e , , 
Jf~(v,)  < C k ~ , s  s fu(v,)f.(v2)cosOsinOlv ~- v ; f  dOd~dv 2 

< CkfRZs163 - v'21BaOdopdv2 

= Ck23s163 - v ; f  dOd~av2 

= C k ( , f ( v l ) (  f.(vi)cos-lOIv'l - vil-"dE~dv ~ 
J R  "j Ev~,v,  ] 

< c fR3f.(vi)l el-  .il- s (27) 

By (25)-(27) 

Jf(v 0 < flJ(Vl)l,,- fu(V'2)dE)dv'l (28) 
E o , . ;  

By Lemma 1 2 f  E L~ '+ N L ~ ,  and so applying Lemma 6 and Lemma 11 to 
(28) we get 

Jf(v,,  t) < C~ + Iv,I) -~ (t > 0) (29) 

with 

e = min(s  2 - 2 .max(3,g 2 - 2)) + min(a ,s ] (1  - a/3) + s'28/3) 

for any s2 < 52 and s] = 2, s~ = 0. But (29) inserted into (24) gives 

D,f(v~ ,t) + C~ + [v,[)e f(v] ,t) <<. Jf(v] ,t) 

< ffk~ + Ivd) -~ (t > 0) 

By Lemma 3 this implies 

Ilfll~,~;,+ < C:(s;') < ~ for s~' = c + 13 (30) 
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If s 2 > 5, then s~' > 3, and  f ~ L ~  with 

Ilfll~,3,+ ~< c~ < 

In  this case iterating the a rgument  once with s '  l = 2, s;  = 2, and  5 < g2 < s2, 
we get (30) with s~' = 22, which completes  the proof  for  the case s 2 > 5. 

If  s 2 < 5 and  in (30) s2' = s2, then the theorem holds. Otherwise 

s 2 > s~' = s 2 -  a + 2(1 - a / 3 )  

and  f E L~ '+ r Repeat ing  the same a rgumen t  and  using 
induct ion we either get (30) with s~' = s 2 after < j steps, or 

j - 1  

~ > 4 '  = [~2 - ~ + 2(1 - ~ / 3 ) ]  y :  ( ~ / 3 )  ~ 
0 

after  j steps. But 

~ (c~//3) " =  (1 - a / /3)  -~ 
0 

and  so 

0 

Thus  after a finite n u m b e r  of steps (30) holds with 

~ '  = c + • = (~2 - a )  + ~ = ~2 

This ends the proof  of Theo rem 2. 
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