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L~ Estimates for the Space-Homogeneous
Boltzmann Equation
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This paper studies the boundedness of solutions f of the initial-value problem for
the space-homogeneous Boltzmann equation for inverse kth power forces, when
k > 5, and under angular cutoff. The main result is that if the initial value is
fo =0 with (1 + |o)f, € L, and (1 + |o])¥fy € L*® for some s > 2, then (1 +
|o])’f, € L for >0 and ess, sup(l + |o])f(v, 1) < oo for any s’ < s when
s<5,and any 8’ < s if s > 5.
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1. INTRODUCTION

This paper studies the boundedness of solutions f of the initial-value
problem for the space-homogeneous Boltzmann equation with inverse kth
power forces, when k > 5, and under angular cutoff. The main result,
contained in Theorem 2 below, is that if the initial value is f; > 0 with
(A +|oP)f, €L, and (1 + |o)fy € L™ for some s >2, then (1 + |v))'f,
€ L® for t>0, and ess, sup(l + |v|)f(v,7) < o0 for any s’ <s when
s<5 and any s’ < sif s > 5.

The only previous results in this direction that we are aware of are by
Carleman®® for elastic collisions and s > 6. For a comment see the remark
after Theorem 2. Our proof is based on a sharpening of his methods
coupled with the use of the by now fairly well developed L' theory.
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2. PRELIMINARIES AND STATEMENT OF THE MAIN THEOREM

In this paper we study spatially homogeneous solutions of the nonlin-
ear Boltzmann equation when there are no exterior forces, i.e., solutions of
the equation

D f(v,t) = Qf(v,t)  (¢>0,0E€ RY) Q)
with Cauchy data
f(0.0)=fo(v) >0 (vER?)
Here Q denotes the collision operator

Ofo) = [, [FOF(Fulorr02)) = [ ® f(01,0)]3 () dit, dos

- 2
F®g(v1,02) = f(v1) g(v2)
and
w(o;,0) = o] — 0

For molecules with angular cutoff the impact parameter u is restricted to a
set

B=B(e)={u=(09) ER}0<0<7/2-¢0< ¢ <27},
and § is independent of g,
S(u,w) = S(8,w), dy,, = sinf df dop

denotes a diffeomorphism of the velocity and impact parameters.
If the impact parameter is u, the asymptotic velocities o], v} after collision
of two colliding particles with initial velocities v, and v, are given by

(v1,05) = Fu(or,0))
Set
p:R3><R3—>R3 (01302)—)01""1}2
T:R*XR*>R (v1,0)) > o) + o
S:RPXR’S>R*XR?  (v,0)(v,,0))
On physical grounds # is subject to the restrictions
PO/M=P’ T°fu=T’ (3)
Lo f,=F,0%  F o ¢ =identity
It follows that
on:wofuzw (4)
For a thorough discussion of (2)—(4), see Ref. 4.



L™ Estimates for the Space-Homogeneous Boltzmann Equation 349

We shall also introduce the familiar decomposition of Qf,
Qf(vr) = Jf(01) = fo))Lf (v)
with
Lf(v)) =IR3XBf(02)S_(u,w) dp,, dv,

and

o=, T8S},01)S () d, doy
together with

(o) = [, S@g(v},05)S (u,w)dn,dovy

The following norms will be used:
5/2
1/l = [ LF@N1+1oP) do (s> 0)

1 flleo,s = esssup | f(0)I(1 + o])” (s>0)

veR?
as well as the corresponding weighted spaces

L7 = L (R*) = { f; fmeasurable on R?, || f]|,, < 00} (s> 0,p=1,00)
and their positive cones
LPr={(feLf;f>0ae)
Set
R,={teR;1t>0}
and define
I fllp.s,+ = supll fC-> D)l s
>0
for functions
f:R,>Lf

A.o. for inverse kth power forces, 5 < k < oo, the weight function §
factorizes (cf. Ref. 4, p. 181) as

S(0,w) = S (8,w) = b (0)WF = h(8)w? (5)
with
0<B=(k=5/(k—1)<1

The dependence of S and 4 on k will usually be suppressed below. We shall
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also refer to the case of elastic collisions with
S(0,w)=h(0)w, h(8) = cosé
as S (@, w). In the present paper we only consider
S (0, w), 5<k<®
with angular cutoff at
O0=m/2—¢
taking

e>0 for 5<k<o
e=0 for k=00
It is well known that % is bounded under these cutoffs. For a proof see, e.g.,
Ref. 4, pp. 181 and 317.
In the following lemma we summarize some essentially well known
properties of the Boltzmann equation (1) in the L'-case.

Lemma 1. Let f, be given with
hELY, flogfo€Lg (6)

Then for inverse kth power forces with 5 < k < o0, and angular cutoffs,
there is a solution

f:R,>L}*

of the Boltzmann equation (1) with initial value

f(v,0) = fo(v)

such that
fRsf(u, t)dv= fRsfo(v) dv, fRBDf(D, t)ydvo= fRSDfO(D) dv M
ijf(u, 1) o dv <IR3fo(0)|U]2dU (8)
L3f(v, Hlog f(v,1) dv<J;3f0(u)log fo(v)dv %)
If || folls,s, < oo for some s; > 2, then the solution can be chosen so that
[/, 4 < 00 (10)

3. SKETCH OF PROOF

The existence results including (7)—(9) follow by the methods of Ref. 1.
The global estimates of higher moments in that paper are not strong
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enough to give (10). They have been improved by Elmroth in Ref. 3 for the
case of kth power molecules without cutoff. His estimates can also be used
in the present cutoff case to prove (10).

Remark. Any solution of Lemma 1 is for a.e. v; a continuously
differentiable function

f(v,)):R, >R,
satisfying the Boltzmann equation (1) pointwise. For a discussion see, e.g.
Ref. 4, Chap. XXI.

The main result of this paper is an L* analog of (10) contained in the
following theorem, and proved in the final section.

Theorem 2. Suppose
eELINL® 11
0 2 sy (

for some s, > 2, and f is any solution of the Boltzmann equation (1) with
initial value f;, satisfying (7)—(9), and if s, > 5 (10) for all s; < s, — 3. Then
fis a mapping from R, to L, and

[ fllosyv < C(55) < 0 (12)

for any 3, < 5, when s, < 5, and any §, < s,, when s, > 5.

Remark. Carleman’s L* estimates in Ref. 2 correspond in our
theorem to the case k = o0, 5, > 6. There he also obtains (12) for 5, = s,.

In Theorem 2 it follows from the hypothesis f, € L N L} that fylog f,
€ L{. And so (6) holds, implying the existence of at least one solution f
satisfying (7)-(9). If s, > 5, then moreover f, € lef+ for any s, < s,-—3,
and the solution can be so chosen that (10) holds for these values of s,.

Constants are in this paper denoted by C, and C, denotes any constant
only depending on k and the relevant L? space. A constant also depending
on fy is denoted by C?. Other kind of dependence, when emphasized, will
be indicated by brackets as the dependence on 5, in C2(5,) above.

For the proof of Theorem 2 we shall repeatedly use the following
well-known lemma:

Lemma 3. Suppose #; and A, are continuous, real-valued functions
on R, with &, > 0. If
f+hf<h, (t>0)

then
sup /(1) < max(f(0),sup hu(t)/ (1)
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We shall also need some transformations of Jf and Lf. Let E_; denote
the plane in R through v and orthogonal to v — &,

E,;={v, € R (v~ T)(v—0)=0)}

Its Lebesgue measure is denoted by dE,. By elementary computations we
can express Jfg through integration over such planes,

ey = [ 2” I "2 o)) g (vy)WB (0, 05)h (8 )sin B df dep do,

= [ JOOf  s(enh(@)cos 0w (o} ey dELds;  (13)

Here
a=2~(k=5)/(k—1)=(k+3)/(k—1)
and E, . is the subset of the plane E, , corresponding to an angular
cutoff at # = 7 /2 — €. For a proof see Ref. 2, p. 32.
Below we shall often use “for a.e. E,;” in the sense that for each v the
property in question holds in a.e. direction (v — ©)/|v — o).
The integral

S0 (01 vy

can be transformed as follows:

S gondfgwpdo= [ oo [ [T f(o)g(op)h(0)
X sinéw? (v, , v,) df do dv, dv,

= foor 08 [ 1(®)

R3
X cos 9w (vy, 0y)d(v))do’ dvdv,  (14)

Here p, is the cutoff at § = 7 /2 — € of the sphere p with center (v, + v,)/2,

radius |v; — v,|/2, and @ the angle between v; — v, and v, — v;. The

measure do’ is the Lebesgue measure on p,. For a proof see Ref. 2, p. 33.
Recalling (5) we can write Lf as

L= [ 2 L7 Feaywt (01 02)h(8)sin 0 df dop do
=27 fo "2 p(0)sin 6 6 fR S(@)wh(v,,0,)dv,

=C, fR (o)W (o, ,0,) dv, (15)
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4. ESTIMATES OF THE COLLISION TERM

In this section we collect some estimates of Lf and of Jf and its factors,
which later will be used in the proof of Theorem 2.

Lemmad. If f€ L) and [z f(v)log™ f(v)dv < C°, then
Lf(v) > C(C% N flla I fllio)(1 + [o])?

Proof. We notice that

v, dv, < Y
jﬂ'_02|<rf( 2) 402 fl”r‘02|<r,f(vz)<jf( 2) 2

+(log))™ [ f(or)log"f(e)de,  (j>1)
f(v2)>j
For a suitable choice of » and j only depending on || f||,, and C° we get
Sy J@) <27 e (01 € RY)
v — oy < r
And so by (15)
Lf(v,) = CkfRSf(Dz)lUl” 0| dv,

> C,rP f(vy) doy> CerP| fll10/2 (16)

Joy— 0| > 71
To get another estimate of Lf we notice that
o1 = 0,/ > [og]? — |0y
if 0 < B <1, thus for B =(k —5)/(k—1) and 5 < k < . Together with

(15) this implies
Lf(o) = G f(oa)loy= vl doy > Clorf® i1 fllo = 1/1h2) (1)
The lemma follows from (16) and (17).

Lemma5. If fe L)*, then

/

[ fwlor = ol do)| <GSR @<y < B) (18)
|2 wlon = ol do| < el [ Sonlon = ol ~dw|

(B<y<2) (19)
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Proof. By (14)
fRan(v‘)(v‘—— o| Ydo, = RSXRaf(u,)f(vz)fp(h(B)cos”‘ﬂ

X vy — vy "0} = 0|V do’ dv, dv,
For0<y<2
f|o’1—- o| Ydo' < C(y)|o; — vy 772
[1}
Since 8 =2 — a, the above implies that
— ol —_ o lB—

[ Jwplor= ol oy < G [ f(o0f(@)lor = 0ol doydo
And so (18) follows for 0 < y < B, and (19) for § < vy < 2.

Lemma 6. Suppose that

$158, >0, 5,—s; <3, and feEL " NLZ
Then for 0 <y <3
JuTConto= ol ™ doy < C(Uf s, + 1o, )1+ o) ™

where
b =min(y,s, + v(s, — 5)/3)

Proof. Set
0, = {v sog < {Ul/z}
0y = {13 |o— vy < Jol270/%27 1

0,=R\(0,U 0,)

Then, as is easily checked,

fo foDlo— v} Ydo, < C(| fllio + 1 fllwo)(d + !DD“Y
J, Jonlo = ol *doy < C(If o + 1 flles)(E + )

f()sf(vl)lv ~ 0"V doy < C(|| fllig + I flleog)(1 + [o]) T 77707

This proves the lemma. W
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Lemma 7. If f Lj*, then for a.e. plane E, ;

fEMJf(Ul)dEl < Ck”f”l,OHLJ(Uz)IUI - Uzl_aﬂdvzllw,o

Proof. Denote by 4 or d(v,) the distance from v, to the plane E,
and set

,0?

(00 = (i) "exp(—ja) (20)
Then
fim [ (o0 f()dor= [ Ifor)dE,
By (14)
[ (o0 f(v) do,
= RaXR3f(vl)f(vz)Lh(0)cos"0|u,— v, °¢;(vt) do’ dv, do,

< sup h(9)COS‘10L3xR3f(”1)f(”2)lvl_ v~

O0<d<m/2—¢
ngbj(v’l) do’ dv, dv,
p
In the limit for a.e. plane E_; this gives
/. () dE< G Jor. JEDS@)01= 0~ xdordr,  (21)

v,

Here x =1 if the plane E,; intersects the sphere p, otherwise x = 0. But
(21) implies the desired result. M

Lemma 8. Given v € R>, set
Y(o)=0  for |o]<|vl, =1 otherwise
If s, > 2 and f € L] N Ly, then for a.e. plane E;
[, $O)IF@)AE < Ce(llf s, + 10’1+ o)) ™!

with C, independent of the plane Ej ;.

Proof.  As in the proof of Lemma 7 for a.e. plane Ej;
fE__‘P(Ul)Jf(Ul) dE, < Ckf (v)f (vp)l 01— 0y "+ 'x dv, dv,

R3><R3f

In this case 0 < x < 1 and x = 0 if both v, and v, are small enough, e.g., if

o) <[ol/¥2 and o] < [0] /42
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And so by Lemma 6 (and symmetry)
[, w()If(o))dE,
<C vy)dv, su o)o — .l dp
kjvzl>lvl/ﬁf( 2) 2|02|>15/6L3f( 1)‘ 1 N .
< Call fllyss (g, + 11 flg) (1 + o) ™17

5. ESTIMATES OF THE SOLUTIONS

Inserting the estimates of Jf and Lf from the previous section into the
Boltzmann equation (1) with solution f as in Lemma 1, and applying
Lemma 3 we shall now prove a sequence of increasingly better estimates of
f, with Theorem 2 as our final result.

Lemma 9. Under (11), if 0 < y <2, then
- 0
“fRJ(vl o — vy Yc1’131'|m,0,+ <C(y)< e

Proof. The case y =0 is the mass-conservation of (7). To study the
case y > 0 we let

¢ R, >R,
denote a continuous function with
0<p<l, e(x)=0 (x <1, p(x)=1 (x >2)
For 0 < vy < B, an integration of (1) multiplied by
o(jlo - oyf)|o — o7
implies by (7)=(9), Lemma 4, and Lemma 35, that
D[ J(or.09(lo = vih)lo— o] "do,
+ Cl?L;f(Dl He(lo — vi)lo— vy " dy,
< thR3f(Ul De(jlo — v))|lv— vy Ydo,
+ [ Lf(o,0)f(or, 0@ (lo = oDlo— o 7" doy

= [ Jfes09(jlo = oo o 7" do, < Clfli2
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And so by Lemma 3
[ D9l =~ vi)lo= v " de,

< max(| [ fo(enlo = ol ""dor|  Culoll/ C2)

< max(C (V) follno + | follwo,0)s Cill foll T2/ C&)
<CUy)<w  (t>0)

For 0< y < B the lemma follows in the limit j— co. For 8 < y < 2 in the
same way

D,fksf(u1 S De(jlo — v)o— v dv,
+ C’?fRaf(Dl De(jlo — vi)|o— 0]V dv,

< Ck(Y)”fO“l,O“L}f(DI’t)lu - 01|B_yd’31“w’0 (22)

By the previous part of the proof, the last term is bounded for ¢ > 0, when
B < y <2B. Again by Lemma 3 this implies

J S 0w(le = wihlo- vl Tdo < <o (1>0)

For B < y <2p, the lemma follows in the limit j— co. By induction the
lemma follows for all y with 0 < y < 2.

Lemma 10. Under (11) for a.e. plane E_;
f f(o, 0 dE, < CE (1>0) (23)
Eu,l‘:

Proof. Define ¢; by (20). An integration of (1) multiplied by ¢;
implies by (7)—(9) and Lemma 4 that

Dtjl;squ(vl)f(vl’t) do, + E?Lﬂ’j(”l)f(vl ;1) do,
<D, fR S(0)f (01, 1) doy+ fR (o) Lf(vr, (0, 1) dv,
= R3¢J-(Ul)-]f(”1’t)d”l

By (7), Lemma 7, and Lemma 9 the right member can be estimated
independently of j as

St D@10y < Cull flg) [ f(oas 0o = oo™ den|

< Cll follioCi(a = 1) = C(a = 1) < oo (t>0)
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An application of Lemma 3 gives

S o0f(or, 1ydoy < max( [ oy (0)fo(0r) oy, C(a = 1)/ T
For a.e. plane E

lim [ g(o0fondor= [, fo(or)doy

< folaos, [ 1+ (0 +y§)1/2]kszdy1dyz

Hence

fED’Bf(ol,t)dvF lim [ g(e)f(onndos G <o (1>0)

Lemma 11. Set
Y(o)=0  for |o] <lol, Y(v))=1 otherwise

Under (11) for a.e. plane E;;
J, ¥(enf(or ek,
< max{ fE RCITCAEZ
2 ] —s5—1
CREN(1+ 9P 1fCoDllma) (1 + (6D 77
O<r<1s
Here 57 =2 if 5, < 5, and s/ is only restricted by s; < s, — 3 if 5, > 5.

Proof. Define ¢; by (20). An integration of (1) multiplied by o
mmplies by (7)-(9) and Lemma 4 that

D[ /()00 (s o+ CR(1L+ [ol) [ gy(o)¥(of(or.1) o,
< D, fR (o) (0)f(0; 1) dv, + fR SO (o) Lf (01, )f (04, ) do,

= j;qz(pj(vl)‘p(ul)*if(ﬁl s Z‘) dU]

By hypothesis f, € lei and f satisfies (10) for sj if 57 > 2. So we can use
Lemma 8 to estimate the right member,

S B 0¥@DIF(or, oy < T+ IFC Mo (L ol 7!
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Thus
thRﬁj(Ul)‘l/(Dl)f(Upt) do,+ él?(l + lvl)ﬁfqu&j(Ul)"P(vl)f(Dl ,1)dv,

-~ ’ 2 —s—a
<G+ IFC Dl ] (L + oy 757
We recall that « + B =2 and apply Lemma 3 to obtain

St eng (e do,
< max{ [ (o0 (e)fo(en) e,
(14 50 17 Dlle) (410 CEGsD)

O<r<t

The desired result follows in the limit j— oo for a.e. plane Ej;.

Lemma 12. Under (11) the following result holds:
I fllaoo.+ < CF

Proof. By (1), (13), and Lemma 4
D,f(v;, 1)+ CA(L + |oy) f(vy, 1)
< Df(vy,t) + f(vi,)Lf(vy, ) = Jf(v, , 1)

=fR3f(v;,t)fE F(05,0)h (8 )cos 0|0} — vy~ dE;dv

v1,01€

<G fR v, f(o)] vi— v, fE f(v}) dE; (24)

01,01

Using Lemma 9 and Lemma 10 we get
Df(vy,t) + Cf(v,, 1) < C(a)  (£>0)
And so the desired result follows by Lemma 3.
Proof of Theorem 2. Given v,, if f(v) =0 for |o| > |v,|/V2, then
f@)f(05)=0 (v, ER’ u€ B)

and so Jf(v,) = 0 if f(v) = 0 for |v| > |v,|/V2 . To use this property of J we
split f in the following way. Given v, we set

F=ft (= foos F fuo)

with

fO)[=fio(0)]=f(v) if o< [o/V2 , =0 otherwise
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Then
Jf(v1) = Jf.(01) + Jfifu(01) + Jfufi(01) + Tfi(v)
= Jf(01) + Jffu (1) + Jff(v)) (25)

From the representation (13) it follows that

Tfifu(vr) = fR () fE Fo(05)h(8)cos™B|v; — vy~ dE} dv)

v1.01€

< Cf JoDlo= il [ fi(vh)dELdv] (26)

01,0

and analogously for Jf,f,. Also
27 fm/2—e ’ ’ : ’ ’
ey < f f7f /27 £ (01 (05)cos Bsin 8| v} — v5|# df dep
2r ra/2 ’ ’ : ’ ’
< Ckfmfo 5 / f.(0)fi(v5)cos 8 sin@|o] — v3|# df do dv,

27 (7 /2 ’ ’ : ’ ’
= Ckfmfo fo / Fi(0))f, (vh)cos8sin8|vi — v5|” df do dv,

=C, fR () fE fu(v5)cos ™18 |v— vp| " dE} du}

G|

<G fR F(@hlo— o~ fE () dE3 dv 27)

o104

By (25)-(27)
(o) < Cef f@Dloy=oil [ fu(vh) dE3 b} (28)

1,01

By Lemma 12 f € L}* N Ly, and so applying Lemma 6 and Lemma 11 to
(28) we get

Jf(o,, ) < CAE)(1 + o)™ (£>0) (29)
with
¢ = min(s, — 2, max(3,5, — 2)) + min(e, s7(1 — a/3) + s3a/3)
for any 5, < s, and 5] =2, 55, = 0. But (29) inserted into (24) gives
D f(vy,1) + CR(1 + |ol))f f(o,0) < If(vy 1)
<CAE)A+In) " (>0
By Lemma 3 this implies

1 fllooss+ < CE(s5) <0 for s3=c+p (30)
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If 5, > 5, then s; >3, and f € L3° with
1 flloo3,+ < C(3) < 0

In this case iterating the argument once with s5; =2, 55 =2, and 5 < §, < s,,
we get (30) with 5§ = §,, which completes the proof for the case s, > 5.
If s, < 5 and in (30) 55 = s,, then the theorem holds. Otherwise

s, >80 =85—a+2(-a/3)

and f € Lyt QLS‘f_a +2(1-ay3 - Repeating the same argument and using
induction we either get (30) with 55 = s, after < j steps, or

j—1
5> 85 =[s,—a+2(1—a/3)] §Oj (a/3)

after j steps. But
o0
S(a/3'=(1-a/3)"
and so
[+e]
[, —a+2(1-a/3)]D(a/3)>s,—a+2>s,
0

Thus after a finite number of steps (30) holds with
s;=c+fB=(s,—a)yta=ys,

This ends the proof of Theorem 2.

REFERENCES

1. L. Arkeryd, On the Boltzmann equation, Arch. Rat. Mechs. Anal. 45:1-34 (1972).

2. T. Carleman, Problemes mathematiques dans la theorie cinétique des gaz (Almgvist and
Wiksell, Uppsala, 1957).

3. T. Elmroth, Global boundedness of moments of solutions of the Boltzmann equation for
infinite range forces, to appear in Arch. Rat. Mechs. Anal. (1983).

4. C. Truesdell and R. G. Muncaster, Fundamentais of Maxwell’s Kinetic Theory of a Simple
Monatomic Gas (Academic Press, New York, 1980).



